Jaya Algorithm is a gradient-free optimization algorithm [1]. It can
be used for Maximization or Minimization of a function. It is a
population based method which repeatedly modifies a population of
individual solutions and capable of solving both constrained and
unconstrained optimization problems. It does not contain any
hyperparameters. Following examples demonstrate the performance of
Jaya
package. The examples are selected from the well-known
report [2].
Jaya
package:Load Jaya
package.
Minimize, $$f(x_i) = \sum_{i=1}^n x_i^2$$ subject to, −100 ≤ xi ≤ 100
a <- jaya(fun = square, lower = c(-100,-100), upper = c(100,100), maxiter = 50, n_var = 2, seed = 100)
#> function (x)
#> {
#> return((x[1] * x[1]) + (x[2] * x[2]))
#> }
#> <bytecode: 0x56320a67fda0>
#> x1 x2 f(x)
#> Best -0.0004926281 0.0002143597 2.886326e-07
summary(a)
#> Jaya Algorithm
#> Population Size = 50
#> Number of iterations = 50
#> Number of variables = 2
#>
#> MINIMIZE,
#> function (x)
#> {
#> return((x[1] * x[1]) + (x[2] * x[2]))
#> }
#> <bytecode: 0x56320a67fda0>
#>
#> Limits:
#> x1 = [-100,100]
#> x2 = [-100,100]
#>
#> Best Result:
#> x1 x2 f(x)
#> Best -0.0004926281 0.0002143597 2.886326e-07
#> Suggestions for the initial population:
#> data frame with 0 columns and 0 rows
plot(a)
Minimize, f(x) = −x1 − x2 subject to, $$g_1(x) = -2x_1^4 + 8x_1^3 - 8x_1^2 + x_2 - 2 \le 0 \\ g_2(x) = -4x_1^4 + 32x_1^3 - 88x_1^2 + 96x_2 +x_2 - 36 \le 0 \\ 0 \le x_1 \le 3 \\ 0 \le x_2 \le 4$$
g24 <- function(x)
{
f <- f(x)
pen1 <- max(0, c1(x))
pen2 <- max(0, c2(x))
return(f + pen1 + pen2)
}
f <- function(x)
{ return(-x[1]-x[2]) }
#Constraints
c1 <- function(x)
{ return( -2*(x[1]**4) + 8*(x[1]**3) - 8*(x[1]**2) + x[2] - 2 ) }
c2 <- function(x)
{ return( -4*(x[1]**4) + 32*(x[1]**3) - 88*(x[1]**2) + 96*x[1] + x[2] -36 ) }
b <- jaya(fun = g24, lower = c(0,0), upper = c(3,4), popSize = 30, maxiter = 30, n_var = 2, seed = 100)
#> function (x)
#> {
#> f <- f(x)
#> pen1 <- max(0, c1(x))
#> pen2 <- max(0, c2(x))
#> return(f + pen1 + pen2)
#> }
#> <bytecode: 0x563208d687b0>
#> x1 x2 f(x)
#> Best 2.329554 3.178352 -5.507887
summary(b)
#> Jaya Algorithm
#> Population Size = 30
#> Number of iterations = 30
#> Number of variables = 2
#>
#> MINIMIZE,
#> function (x)
#> {
#> f <- f(x)
#> pen1 <- max(0, c1(x))
#> pen2 <- max(0, c2(x))
#> return(f + pen1 + pen2)
#> }
#> <bytecode: 0x563208d687b0>
#>
#> Limits:
#> x1 = [0,3]
#> x2 = [0,4]
#>
#> Best Result:
#> x1 x2 f(x)
#> Best 2.329554 3.178352 -5.507887
#> Suggestions for the initial population:
#> data frame with 0 columns and 0 rows
plot(b)
Minimize, f(x) = x12 + (x2 − 1)2 subject to, $$h(x) = x_2 - x_1^2 = 0 \\ -1 \le x_1 \le 1 \\ -1 \le x_2 \le 1$$
# Test Function to minimize
g11 <- function(x)
{
f <- f(x)
if(round(c1(x),2) != 0){
return(f + c1(x))
}
return(f)
}
f <- function(x)
{ return(x[1]**2 + (x[2] - 1)**2) }
c1 <- function(x)
{ return(x[2] - x[1]**2) }
c <- jaya(fun = g11, lower = c(-1,-1), upper = c(1,1), maxiter = 100, n_var = 2, seed = 100)
#> function (x)
#> {
#> f <- f(x)
#> if (round(c1(x), 2) != 0) {
#> return(f + c1(x))
#> }
#> return(f)
#> }
#> <bytecode: 0x56320acde358>
#> x1 x2 f(x)
#> Best 0.708031 0.5061709 0.745175
summary(c)
#> Jaya Algorithm
#> Population Size = 50
#> Number of iterations = 100
#> Number of variables = 2
#>
#> MINIMIZE,
#> function (x)
#> {
#> f <- f(x)
#> if (round(c1(x), 2) != 0) {
#> return(f + c1(x))
#> }
#> return(f)
#> }
#> <bytecode: 0x56320acde358>
#>
#> Limits:
#> x1 = [-1,1]
#> x2 = [-1,1]
#>
#> Best Result:
#> x1 x2 f(x)
#> Best 0.708031 0.5061709 0.745175
#> Suggestions for the initial population:
#> data frame with 0 columns and 0 rows
plot(c)
Genetic
Algorithm (GA):This section compares the performance of JA
with
GA
for a contrained function discussed in [1]. For
comparison purpose R package GA
[3] is used.
Minimize, f(x) = 100(x12 − x2)2 + (1 − x2)2 subject to, $$x_1x_2 + x_1 - x_2 + 1.5 \le 0 \\ 10 - x_1x_2 \le 0 \\ 0 \le x_1 \le 1 \\ 0 \le x_2 \le 13$$
# Function to test for
f <- function(x)
{ return( 100*((x[1]**2 - x[2])**2) + (1 - x[1])**2 ) }
# Constraints
c1 <- function(x)
{ return( (x[1]*x[2]) + x[1] - x[2] + 1.5) }
c2 <- function(x)
{ return(10 - (x[1]*x[2])) }
# Function with penalty
con <- function(x){
func <- -f(x)
pen <- sqrt(.Machine$double.xmax)
pen1 <- max(0, c1(x))*pen
pen2 <- max(0, c2(x))*pen
return(func - pen1 - pen2)
}
d <- jaya(fun = con, lower = c(0,0), upper = c(1,13), maxiter = 100, n_var = 2, seed = 123, opt = "Maximize")
#> function (x)
#> {
#> func <- -f(x)
#> pen <- sqrt(.Machine$double.xmax)
#> pen1 <- max(0, c1(x)) * pen
#> pen2 <- max(0, c2(x)) * pen
#> return(func - pen1 - pen2)
#> }
#> <bytecode: 0x5632071534c8>
#> x1 x2 f(x)
#> Best 0.8122023 12.3122 -13578.18
summary(d)
#> Jaya Algorithm
#> Population Size = 50
#> Number of iterations = 100
#> Number of variables = 2
#>
#> MAXIMIZE,
#> function (x)
#> {
#> func <- -f(x)
#> pen <- sqrt(.Machine$double.xmax)
#> pen1 <- max(0, c1(x)) * pen
#> pen2 <- max(0, c2(x)) * pen
#> return(func - pen1 - pen2)
#> }
#> <bytecode: 0x5632071534c8>
#>
#> Limits:
#> x1 = [0,1]
#> x2 = [0,13]
#>
#> Best Result:
#> x1 x2 f(x)
#> Best 0.8122023 12.3122 -13578.18
#> Suggestions for the initial population:
#> data frame with 0 columns and 0 rows
plot(d)
[1] Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
[2] Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello, C. C., & Deb, K. (2006). Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Journal of Applied Mechanics, 41(8), 8-31.
[3] Scrucca, L. (2013). GA: a package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1-37.