Package: decomposedPSF 0.2
decomposedPSF: Time Series Prediction with PSF and Decomposition Methods (EMD and EEMD)
Predict future values with hybrid combinations of Pattern Sequence based Forecasting (PSF), Autoregressive Integrated Moving Average (ARIMA), Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) methods based hybrid methods.
Authors:
decomposedPSF_0.2.tar.gz
decomposedPSF_0.2.zip(r-4.5)decomposedPSF_0.2.zip(r-4.4)decomposedPSF_0.2.zip(r-4.3)
decomposedPSF_0.2.tgz(r-4.5-any)decomposedPSF_0.2.tgz(r-4.4-any)decomposedPSF_0.2.tgz(r-4.3-any)
decomposedPSF_0.2.tar.gz(r-4.5-noble)decomposedPSF_0.2.tar.gz(r-4.4-noble)
decomposedPSF_0.2.tgz(r-4.4-emscripten)decomposedPSF_0.2.tgz(r-4.3-emscripten)
decomposedPSF.pdf |decomposedPSF.html✨
decomposedPSF/json (API)
# Install 'decomposedPSF' in R: |
install.packages('decomposedPSF', repos = c('https://neerajdhanraj.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:aa689c974c. Checks:8 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 25 2025 |
R-4.5-win | OK | Feb 25 2025 |
R-4.5-mac | OK | Feb 25 2025 |
R-4.5-linux | OK | Feb 25 2025 |
R-4.4-win | OK | Feb 25 2025 |
R-4.4-mac | OK | Feb 25 2025 |
R-4.3-win | OK | Feb 25 2025 |
R-4.3-mac | OK | Feb 25 2025 |
Exports:eemdarimaeemdpsfeemdpsfarimaemdarimaemdpsfemdpsfarimalpsf
Dependencies:cliclustercolorspacecurldata.tablefansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigPSFquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangRlibeemdscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo