
Package: imputeTestbench (via r-universe)
October 15, 2024

Type Package

Title Test Bench for the Comparison of Imputation Methods

Date 2017-06-22

Maintainer Marcus W. Beck <mbafs2012@gmail.com>

Version 3.0.1

Description Provides a test bench for the comparison of missing data
imputation methods in uni-variate time series. Imputation
methods are compared using different error metrics. Proposed
imputation methods and alternative error metrics can be used.

Imports dplyr, forecast, ggplot2, imputeTS, reshape2, stats, tidyr,
zoo

BugReports https://github.com/neerajdhanraj/imputeTestbench/issues

License CC0

LazyData TRUE

RoxygenNote 6.0.1

Suggests knitr, rmarkdown, magrittr

Repository https://neerajdhanraj.r-universe.dev

RemoteUrl https://github.com/neerajdhanraj/imputetestbench

RemoteRef HEAD

RemoteSha 0fe221374326f2c715d5fcaa2b31a3be89cebec1

Contents
impute_errors . 2
mae . 4
mape . 5
plot_errors . 5
plot_impute . 6
print.errprof . 8
rmse . 8
sample_dat . 9

1

https://github.com/neerajdhanraj/imputeTestbench/issues

2 impute_errors

Index 11

impute_errors Function working as testbench for comparison of imputing models

Description

Function working as testbench for comparison of imputing models

Usage

impute_errors(dataIn, smps = "mcar", methods = c("na.approx", "na.interp",
"na.interpolation", "na.locf", "na.mean"), methodPath = NULL,
errorParameter = "rmse", errorPath = NULL, blck = 50, blckper = TRUE,
missPercentFrom = 10, missPercentTo = 90, interval = 10,
repetition = 10, addl_arg = NULL)

Arguments

dataIn input ts for testing

smps chr string indicating sampling type for generating missing data, see details

methods chr string of imputation methods to use, one to many. A user-supplied function
can be included if MethodPath is used, see details.

methodPath chr string of location of script containing one or more functions for the proposed
imputation method(s)

errorParameter chr string indicating which error type to use, acceptable values are "rmse" (de-
fault), "mae", or "mape". Alternatively, a user-supplied function can be passed
if errorPath is used, see details.

errorPath chr string of location of script containing one or more error functions for evalu-
ating imputations

blck numeric indicating block sizes as a percentage of the sample size for the missing
data, applies only if smps = 'mar'

blckper logical indicating if the value passed to blck is a percentage of the sample size
for missing data, otherwise blck indicates number of observations

missPercentFrom

numeric from which percent of missing values to be considered

missPercentTo numeric for up to what percent missing values are to be considered

interval numeric for interval between consecutive missPercent values

repetition numeric for repetitions to be done for each missPercent value

addl_arg arguments passed to other imputation methods as a list of lists, see details.

impute_errors 3

Details

The default methods for impute_errors are na.approx, na.interp, na.interpolation, na.locf,
and na.mean. See the help file for each for additional documentation. Additional arguments for the
imputation functions are passed as a list of lists to the addl_arg argument, where the list contains
one to many elements that are named by the methods. The elements of the master list are lists with
arguments for the relevant methods. See the examples.

A user-supplied function can also be passed to methods as an additional imputation method. A
character string indicating the path of the function must also be supplied to methodPath. The path
must point to a function where the first argument is the time series to impute.

An alternative error function can also be passed to errorParameter if errorPath is not NULL.
The function specified in errorPath must have two arguments where the first is a vector for the
observed time series and the second is a vector for the predicted time series.

The smps argument indicates the type of sampling for generating missing data. Options are smps
= 'mcar' for missing completely at random and smps = 'mar' for missing at random. Additional
information about the sampling method is described in sample_dat. The relevant arguments for
smps = 'mar' are blck and blckper which greatly affect the sampling method.

Value

Returns an error comparison for imputation methods as an errprof object. This object is structured
as a list where the first two elements are named Parameter and MissingPercent that describe the
error metric used to assess the imputation methods and the intervals of missing observations as
percentages, respectively. The remaining elements are named as the chr strings in methods of the
original function call. Each remaining element contains a numeric vector of the average error at each
missing percent of observations. The errprof object also includes an attribute named errall as
an additional list that contains all of the error estimates for every imputation method and repetition.

See Also

sample_dat

Examples

Not run:
default options
aa <- impute_errors(dataIn = nottem)
aa
plot_errors(aa)

change the simulation for missing obs
aa <- impute_errors(dataIn = nottem, smps = 'mar')
aa
plot_errors(aa)

use one interpolation method, increase repetitions
aa <- impute_errors(dataIn = nottem, methods = 'na.interp', repetition = 100)
aa
plot_errors(aa)

4 mae

change the error metric
aa <- impute_errors(dataIn = nottem, errorParameter = 'mae')
aa
plot_errors(aa)

passing addtional arguments to imputation methods
impute_errors(dataIn = nottem, addl_arg = list(na.mean = list(option = 'mode')))

End(Not run)

mae Mean Absolute Error Calculation

Description

takes difference between Original data and Predicted data as input

Usage

mae(obs, pred)

Arguments

obs numeric vector of original data

pred numeric vector of predicted data

Value

maeVal as Mean Absolute Error

Examples

Generate 100 random numbers within some limits
x <- sample(1:7, 100, replace = TRUE)
y <- sample(1:4, 100, replace = TRUE)
z <- mae(x, y)
z

mape 5

mape Mean Absolute Percent Error Calculation

Description

takes difference between Original data and Predicted data as input

Usage

mape(obs, pred)

Arguments

obs numeric vector of original data

pred numeric vector of predicted data

Value

mapeVal as Mean Absolute Error

Examples

Generate 100 random numbers within some limits
x <- sample(1:7, 100, replace = TRUE)
y <- sample(1:4, 100, replace = TRUE)
z <- mape(x, y)
z

plot_errors Function to plot the Error Comparison

Description

Function to plot the Error Comparison

Usage

plot_errors(dataIn, plotType = c("boxplot"))

S3 method for class 'errprof'
plot_errors(dataIn, plotType = c("boxplot"))

Arguments

dataIn an errprof object returned from impute_errors

plotType chr string indicating plot type, accepted values are "boxplot", "bar", or "line"

6 plot_impute

Value

A ggplot object that can be further modified. The entire range of errors are shown if plotType =
"boxplot", otherwise the averages are shown if plotType = "bar" or "line".

Examples

aa <- impute_errors(dataIn = nottem)

default plot
plot_errors(aa)
Not run:
bar plot of averages at each repetition
plot_errors(aa, plotType = 'bar')

line plot of averages at each repetition
plot_errors(aa, plotType = 'line')

change the plot aesthetics

library(ggplot2)
p <- plot_errors(aa)
p + scale_fill_brewer(palette = 'Paired', guide_legend(title = 'Default'))
p + theme(legend.position = 'top')
p + theme_minimal()
p + ggtitle('Distribution of error for imputed values')
p + scale_y_continuous('RMSE')

End(Not run)

plot_impute Plot imputations

Description

Plot imputations for data from multiple methods

Usage

plot_impute(dataIn, smps = "mcar", methods = c("na.approx", "na.interp",
"na.interpolation", "na.locf", "na.mean"), methodPath = NULL, blck = 50,
blckper = TRUE, missPercent = 50, showmiss = FALSE, addl_arg = NULL)

Arguments

dataIn input ts for testing

smps chr string indicating sampling type for generating missing data, see details

methods chr string of imputation methods to use, one to many. A user-supplied function
can be included if MethodPath is used.

plot_impute 7

methodPath chr string of location of script containing one or more functions for the proposed
imputation method(s)

blck numeric indicating block sizes as a percentage of the sample size for the missing
data, applies only if smps = 'mar'

blckper logical indicating if the value passed to blck is a percentage of the sample size
for missing data, otherwise blck indicates number of observations

missPercent numeric for percent of missing values to be considered

showmiss logical if removed values missing from the complete dataset are plotted

addl_arg arguments passed to other imputation methods as a list of lists, see details.

Details

See the documentation for impute_errors for an explanation of the arguments.

Value

A ggplot object showing the imputed data for each method. Red points are labelled as ’imputed’
and blue points are labelled as ’retained’ from the original data set. Missing data that were removed
can be added to the plot as open circles if showmiss = TRUE. See the examples for modifying the
plot.

Examples

default
plot_impute(dataIn = nottem)

change missing percent total
plot_impute(dataIn = nottem, missPercent = 10)

show missing values
plot_impute(dataIn = nottem, showmiss = TRUE)

use mar sampling
plot_impute(dataIn = nottem, smps = 'mar')

change the plot aesthetics
Not run:
library(ggplot2)
p <- plot_impute(dataIn = nottem, smps = 'mar')
p + scale_colour_manual(values = c('black', 'grey'))
p + theme_minimal()
p + ggtitle('Imputation examples with different methods')
p + scale_y_continuous('Temp at Nottingham Castle (F)')

End(Not run)

8 rmse

print.errprof Print method for errprof

Description

Print method for errprof class

Usage

S3 method for class 'errprof'
print(x, ...)

Arguments

x input errprof object
... arguments passed to or from other methods

Value

list output for the errprof object

rmse Root Mean Square Error Calculation

Description

takes difference between Original data and Predicted data as input

Usage

rmse(obs, pred)

Arguments

obs numeric vector of original data
pred numeric vector of predicted data

Value

rmseVal as Root Mean Square Error

Examples

Generate 100 random numbers within some limits
x <- sample(1:7, 100, replace = TRUE)
y <- sample(1:4, 100, replace = TRUE)
z <- rmse(x, y)
z

sample_dat 9

sample_dat Sample time series data

Description

Sample time series using completely at random (MCAR) or at random (MAR)

Usage

sample_dat(datin, smps = "mcar", repetition = 10, b = 10, blck = 50,
blckper = TRUE, plot = FALSE)

Arguments

datin input numeric vector

smps chr sring of sampling type to use, options are "mcar" or "mar"

repetition numeric for repetitions to be done for each missPercent value

b numeric indicating the total amount of missing data as a percentage to remove
from the complete time series

blck numeric indicating block sizes as a proportion of the sample size for the missing
data

blckper logical indicating if the value passed to blck is a proportion of missper, i.e.,
blocks are to be sized as a percentage of the total size of the missing data

plot logical indicating if a plot is returned showing the sampled data, plots only the
first repetition

Value

Input data with NA values for the sampled observations if plot = FALSE, otherwise a plot showing
the missing observations over the complete dataset.

The missing data if smps = 'mar' are based on random sampling by blocks. The start location of
each block is random and overlapping blocks are not counted uniquely for the required sample size
given by b. Final blocks are truncated to ensure the correct value of b is returned. Blocks are fixed at
1 if the proportion is too small, in which case "mcar" should be used. Block sizes are also truncated
to the required sample size if the input value is too large if blckper = FALSE. For the latter case,
this is the same as setting blck = 1 and blckper = TRUE.

For all cases, the first and last oservation will never be removed to allow comparability of interpo-
lation schemes. This is especially relevant for cases when b is large and smps = 'mar' is used. For
example, method = na.approx will have rmse = 0 for a dataset where the removed block includes
the last n observations. This result could provide misleading information in comparing methods.

10 sample_dat

Examples

a <- rnorm(1000)

default sampling
sample_dat(a)

use mar sampling
sample_dat(a, smps = 'mar')

show a plot of one repetition
sample_dat(a, plot = TRUE)

show a plot of one repetition, mar sampling
sample_dat(a, smps = 'mar', plot = TRUE)

change plot aesthetics
library(ggplot2)
p <- sample_dat(a, plot = TRUE)
p + scale_colour_manual(values = c('black', 'grey'))
p + theme_minimal()
p + ggtitle('Example of simulating missing data')

Index

ggplot, 7

impute_errors, 2, 5, 7

mae, 4
mape, 5

na.approx, 3
na.interp, 3
na.interpolation, 3
na.locf, 3
na.mean, 3

plot_errors, 5
plot_impute, 6
print.errprof, 8

rmse, 8

sample_dat, 3, 9

ts, 2, 6

11

	impute_errors
	mae
	mape
	plot_errors
	plot_impute
	print.errprof
	rmse
	sample_dat
	Index

